
Funkcje w Pythonie

M@я3k Pųð€£kØ

Programowanie w Pythonie

Spis treści

• Podprogram

• Funkcje

• Opis budowy funkcji

• Nazwa funkcji

• Zwracanie wartości

• Wywoływanie funkcji

• Przekazywanie zmiennych

• Zmienne globalne

2

Podprogram

• Przy wielkich programach problemem staje się
zarządzanie dużą ilością linijek kodu.

• Rozwiązaniem jest podział dużego kodu na
części zwane podprogramami.

• Podprogram zawiera część kodu, który stanowi
zwartą całość i może być używany wielokrotnie.

• Pozwala uprościć program główny i zwiększyć
czytelność kodu.

3

Funkcje

• Funkcje w Pythonie to bloki kodu wielokrotnego
użytku, definiowane słowem kluczowym def.

• Pozwalają na modularność, łatwiejsze zarządzanie
kodem i unikanie powtórzeń.

• Dzięki nim uzyskuje się jasną i przejrzystą strukturą
przy dużych możliwościach i elastyczności.

• Funkcje organizują program, przyjmują argumenty
(dane wejściowe) w nawiasach, wykonują operacje
i opcjonalnie zwracają wynik za pomocą return.

4

Przykład funkcji
def modul_liczby(a):

 if a < 0:

 a = -a

 else:

 a = a

 return a

a = float(input("Podaj liczbę: "))

m = modul_liczby (a)

print (m)

print(modul_liczby(a))

print(f"Modul liczby {a} wynosi {modul_liczby(a)}")

5

Przykład funkcji
def modul_liczby(a): #początek funkcji modul_liczby

 if a < 0:

 a = -a

 else:

 a = a

 return a #Zwracana wartość funkcji

#koniec funkcji

---------program główny----------

a = float(input("Podaj liczbę: "))

Wywołanie funkcji i drukowanie wyniku

m = modul_liczby (a)

print (m)

print(modul_liczby(a))

print(f"Modul liczby {a} wynosi {modul_liczby(a)}")

6

Opis budowy funkcji

7

def Słowo kluczowe rozpoczynające definicję funkcji

nazwa_funkcji Opisowa nazwa (zwykle zapisywana konwencją snake_case), która
określa, co funkcja robi (np. oblicz_pole)

parametr1,
parametr2, …

Zmienne (argumenty), które funkcja przyjmuje;
mogą być opcjonalne

Ciało funkcji Wcięty kod (4 spacje), który wykonuje zadania

return Zwraca wartość z funkcji, kończąc jej działanie

def modul_liczby(a):

 if a < 0:

 a = -a

 else:

 a = a

 return a

Nazwa funkcji
• W języku Python nazwy funkcji powinny być zgodne

z konwencją snake_case, czyli wszystkie słowa z
małych liter, oddzielone znakiem podkreślenia _.
– Ta konwencja określona jest przez twórców tego języka i

większość programistów się jej trzyma.

wyczysc_ekran

divide_numbers

exclude_point_from_screen

• Nazwa funkcji określa, co się powinno wydarzyć, gdy
tę funkcję się wywoła.
– Jest najczęściej czasownikiem (clear, go_to_store,
print).

8

Zwracanie wartości
• Funkcja zwracająca wartość:
def modul_liczby(a):

 if a < 0:

 a = -a

 else:

 a = a

 return a #zwracanie wartości

• Funkcja bezwrotna:
def wyswietl_liczby(a):

 for i in range (a):

 print (i)

• Funkcja może zarówno zwracać wartość zwrotną jak i nie robić tego. Jeśli funkcja nie
zwraca żadnej wartości przy użyciu return, to domyślnie zwraca ona wartość None.

def fun():

print("Have a good time!")

ret = fun() # Have a good time!

print(ret) # None.

9

Wywoływanie funkcji cz. 1
• Wywołanie funkcji bez parametrów
def wyswietl_komunikat ():

 print("Błąd dzielenia przez zero! ")

a, b, c = 0, 0, 0

if b == 0:

 wyswietl_komunikat ()

c = a/b

• Wywołanie funkcji z parametrami
def pole_prostokata (a, b):

 p = a * b return p

a, b, p = 3, 4, 0

p = pole_prostokata (a,b)

print (p)

• Dzięki nim uzyskuje się jasną i przejrzystą strukturą przy dużych
możliwościach i elastyczności.

10

Wywoływanie funkcji cz. 2
• Wywołanie funkcji z parametrami domyślnymi.
def pole_prostokata (a, b = 10):

 p = a * b

 return p

a, b, p = 3, 4, 0

p = pole_prostokata (a, b) # podano b

print (p) #12

p = pole_prostokata (a) #nie podano b

print (p) #30

• Wywołując funkcję można zastosować nazywanie parametrów. Python pozwala wtedy na napisanie
parametrów nie po kolei.

def dzielenie (a, b):

 c = a / b

 return c

a, b, c = 20, 4, 0

c = dzielenie (a, b) # zwykła kolejność

print (c) #5

c = dzielenie(b = 10, a = 5) #nazwanie parametrów i odwrotna kolejność

print (c) #0.5

11

Przekazywanie zmiennych
• Przekazując zmienne typu int, float, string, bool do funkcji to

przekazuje się ich kopie. Są to zmienne lokalne widoczne tylko
w danej funkcji lub części programu.

• Zmiany ich wartości nie będą widoczne w głównej części
programu. :

def kwadrat (a):

 a = a * a

 print ("a w funkcji" , a)

 return a

a = 4

print ("a startowe" , a)

kwadrat (a)

print ("a poza funkcja" , a)

a = kwadrat (a)

print ("a poza funkcja zmienione" , a)
12

Zmienne globalne
• Zmienne globalne to zmienne, które mają zasięg w całym programie.
• Tworzy się je stawiając słowo kluczowe global przed nazwą zmiennej:

def kwadrat(b):

 global a

zmienna globalna widoczna w całym programie

 a = b * b

a = 100

kwadrat (a)

print (a) # zostanie wypisane 10000

• Zalety zmiennych globalnych:
– Dostęp do nich możliwy z dowolnego miejsca w kodzie.
– Umożliwiają łatwe przechowywanie konfiguracji lub wspólnych stanów dla wielu funkcji.
– W bardzo prostych, krótkich skryptach mogą przyspieszyć pisanie kodu.

• Wady zmiennych globalnych:
– Dowolna część programu może zmienić zmienną globalną, co utrudnia zrozumienie, kiedy i dlaczego

wartość uległa zmianie.
– Zagrożenie kolizją nazw - ryzyko przypadkowego nadpisania zmiennej.
– Utrudnione testowanie.
– Dostęp do zmiennych globalnych jest wolniejszy niż do lokalnych.

13

Ćwiczenie cz.1
1. Napisz program wczytujący liczbę n i wyliczający dla niej silnię

n! (mnożenie liczb od 1 do n) i sumę liczb od 1 do n. Każdą z
nich zapisz w oddzielnej funkcji.

2. Napisz program podający informacje o kole. Wczytuje wielkość
promienia i podaje informacje wyliczane w oddzielnych
funkcjach:

a) Średnica, pole, obwód, pole kwadratu wpisanego w koło i pole
kwadratu opisanego na kole.

3. Napisz program liczący pola figur geometrycznych. Każda z nich
ma być zapisana i liczona w oddzielnej funkcji. Wywołując
funkcje jako argumentu użyj odpowiednich wielkości (bok,
podstawa, wysokość)
a) Kwadrat, prostokąt, romb, trójkąt.

4. Napisz program wczytujący dwie liczby a i b, a potem
realizujący na nich obliczeń. Każda z nich ma być realizowana w
oddzielnej funkcji:

a) Suma, różnica, mnożenie, dzielenie, dzielenie modulo, potęgowanie
ab

14

Ćwiczenie cz.2
4. Napisz program wczytujący 10 liczb i obliczający w

oddzielnych funkcjach różne informacje o tych liczbach.
a) Suma, średnia arytmetyczna, element maksymalny, element

minimalny, różnicę między największym i najmniejszym
elementem, liczbę liczb parzystych, liczbę liczb nieparzystych.

5. Napisz program wczytujący liczbę i obliczający w
oddzielnych funkcjach wartości ciągów:
a) Fibonacciego, Tribonacciego, Tetrabonacciego.

6. Napisz funkcję czy_pierwsza(n), która sprawdzi, czy
liczba jest pierwsza.

7. Napisz funkcję czy_palindrom(tekst), która
sprawdzi, czy napis jest palindromem

8. Napisz program wczytujący tekst i podający w
oddzielnych funkcjach informacje o tym tekście:

a) Długość tekstu, ilość samogłosek, ilość spółgłosek,
odwrócenie tekstu.

15

Powtórzenie
• Dlaczego dzielimy programy na podprogramy?

• Jak jest realizowana praktycznie idea dzielenia
programu w Pythonie?

• Jakie właściwości musi mieć nazwa funkcji?

• Jak przekazywać zmienne do funkcji?

• Czym się różnią zmienne lokalne i globalne?

• Co robi polecenie return?

16

	Slajd 1: Funkcje w Pythonie
	Slajd 2: Spis treści
	Slajd 3: Podprogram
	Slajd 4: Funkcje
	Slajd 5: Przykład funkcji
	Slajd 6: Przykład funkcji
	Slajd 7: Opis budowy funkcji
	Slajd 8: Nazwa funkcji
	Slajd 9: Zwracanie wartości
	Slajd 10: Wywoływanie funkcji cz. 1
	Slajd 11: Wywoływanie funkcji cz. 2
	Slajd 12: Przekazywanie zmiennych
	Slajd 13: Zmienne globalne
	Slajd 14: Ćwiczenie cz.1
	Slajd 15: Ćwiczenie cz.2
	Slajd 16: Powtórzenie

